Topic: Evolution: Prove me wrong! | |
---|---|
WHERE is this incest? You jump to it because of missing data, it would be as if I said that the planet pluto must be covered with blue cheese, we haven't seen the surface so why not? "1 : the utterance of false charges or misrepresentations which defame and damage another's reputation" This is exactly what you're doing with creationism, because there is missing data you ASSUME that it must mean incest. Show me some scripture that says there was incest in the begining of man. Until then, what you are doing IS slander to creationism, not to mention lumping non judaic/ christian/ muslim creation beliefs in with ours. Incest in the bible doesn't pop up until Lott and his two daughters, long after Adam & Eve & this story is to teach us a lesson AGAINST incest. Please stop presenting your assumptions as fact, it's slander in the fullest;^[ I cannot slander a book and I am talking about the writings in the book called the bible of which creationism supposedly roots. Again, who am I to assume there are is missing information. Creationism is based on the bible, correct??? Noone told me when I was taught that god created hordes of people but only wrote about Adam and Eve. So how was I to know there was information not in the bible that is taken as fact of creationism????? If it is taken literally it is incestuous. I thought that was the purpose of creationism to teach the bible beginning of the world?????? But I guess that is the freedom of beliefs, one can take a book and interpret, add, subtract and recreate the meaning to however it fits for them. But I really thought creationism was to teach the beginning of Adam and Eve and the perpetuation of the human race from the incestuous family created thereof. So what do I know?????? I am discussing the issues as I see them it is not a personal attack on any one person, if the person is taking it that way, I will apologize, as it is not meant as an attack of a person. I interpret creationism as the literal teachings of the book called the bible. |
|
|
|
Still you don't seem to accept the fact that the bible DOESN'T say that life continued because of incest, just as we can't know what's in parralel universes if they exist, because we don't have the data, we can't know (if adam & eve were literal) where life continued from there. And what of Lilith? She was, according to older Jewish tradition Adams first wife, a completly other person. I'm sorry you've had such a bad experiance with christianity, but you can't equate missing data into a sollution. I'm not saying it couldn't have been incest, now let's hear you admit it doesn't have to mean incest;^]
|
|
|
|
On the 'flood'...and a little more...
And now we come to the main question. Which of the many theories of the origins of life on earth are consistent with the known vertebrate fossil record, and explain its major features? I'll go back to the two main models I outlined at the beginning, creationism and evolution, and break them down further into several different possibilities. I'll try to summarize what they say, and whether or not they are consistent with the major features of the fossil record. Evolution alone (with no God, or with a non-interfering God) Evolution of all vertebrates by descent from a common ancestor, with change occurring both through punctuated equilibrium and gradual evolution, and with both modes of species formation (anagenesis and cladogenesis). These mechanisms and modes are consistent with (and in fact are predicted by) what is presently known about mutation, developmental biology, and population genetics According to this model, the remaining gaps in the fossil record are primarily due to the chance events of fossilization (particularly significant if evolution occurs locally or rapidly), in combination with immigration (the spreading of a new species from the site where it evolved out into different areas). Evolution with a "Starting-gate God" Evolution by common descent, as above, with God having set everything in motion in the beginning -- for instance, at the initial creation of the universe, or at the initial occurrence of life on earth -- and not having affected anything since. Evolution with a "Tinkering God" Evolution by common descent, as above, with God occasionally altering the direction of evolution (e.g., causing sudden extinctions of certain groups, causing certain mutations to arise). The extent of the "tinkering" could vary from almost none to constant adjustments. However, a "constant tinkering" theory may run into the problem that vertebrate history on the whole does not show any obvious direction. For instance, mammal evolution does not seem to have led inescapably toward humans, and does not show any consistent discernable trend (except possibly toward increased body size). Many lineages do show some sort of trend over time, but those trends were usually linked to available ecological niches, not to an inherent "evolutionary path", and the "trends" often reversed themselves when the environment or the competition changed. Models 1, 2, and 3 are all consistent with the known fossil record. Standard "young-earth" creationism Creation of separate "kinds" in the order listed in Genesis, in six days, followed by a cataclysmic flood. The Flood model is completely falsified, since the fossils appear in a different order than can be explained by any conceivable "sorting" model. Note that this is true not just for terrestrial vertebrates, but also for aquatic vertebrates, pollen, coral reefs, rooted trees, and small invertebrates. For example, ichthyosaurs and porpoises are never (not once!) found in the same layers; crabs and trilobites are never found in the same layers; small pterosaurs and equal-sized modern birds and bats are never found in the same layers. In addition, countless geological formations seem to be the result of eons of gradual accumulation of undisturbed sediment, such as multi-layer river channels and deep-sea sediments, and there are no indications of a single worldwide flood. In addition, the Flood Model cannot account for the obvious sorting by subtle anatomical details (easily explained by evolutionary models), or for the phenomenon that lower layers of lava have older radiometric dates. These are only a few of the problems with the Flood Model. Creation in six "metaphorical" days is also falsified, since the animals appeared in a different order than that listed in Genesis, and over hundreds of millions of years rather than six days. "Separately created kinds", but with an old Earth. Literal creationism won't fly, but could the concept of "separately created kinds" still be viable, with the creations occurring over millions of years? This would require the following convoluted adjustments: First, if every "kind", (species, genus, family, whatever) was separately created, there must have been innumerable successive and often simultaneous waves of creation, occurring across several hundred million years, including thousands of creations of now- extinct groups. Second, these thousands of "kinds" were created in a strictly correlated chronological/morphological sequence, in a nested hierarchy. That is, virtually no "kind" was created until a similar "kind" already existed. For instance, for the reptile-to-mammal transition, God must have created at least 30 genera in nearly perfect morphological order, with the most reptilian first and the most mammalian last, and with only relatively slight morphological differences separating each successive genus. Similarly, God created legged whales before he created legless whales, and Archeopteryx before creating modern birds. He created small five-toed horse- like creatures before creating medium-sized three-toed horses, which in turn were created before larger one-toed horses. And so on. This very striking chronological/morphological sequence, easily explained by models 1, 2, and 3, is quite puzzling in this model. Third, God did not create these kinds in a sequence that obviously progressed in any direction, as discussed briefly under model 3. This is not necessarily a fatal flaw (mysterious are the ways of God, right?), but it is another puzzle, another unexplained aspect of the fossil record. Fourth, what about those species-to-species transitions? They appear to show that at least some species, genera, and families arose by evolution (not necessarily all, but at least some.) How can a creationist model be reconciled with this evidence? "Minor" evolution allowed. In this model, the species-species transitions DO represent evolution, but of a minor and unimportant variety. Note, however, that during these bursts of "minor evolution", the evolution took place in an apparently non-directed manner, sometimes crossed genus and family lines, and resulted in just the same sorts of morphological differences that are seen between the other, presumably created, groups of animals. Separately created fossils. In this model, the "species-species transitions" do not represent evolution. This implies that every individual fossil in the species-to-species transitions must have been separately created, either by creation of the animal that later died and was fossilized, or by creation of a fossil in situ in the rock. I have heard this model called the "Lying God Theory". In summary, models 1, 2, and 3 (slightly different versions of basic evolutionary theory) are consistent with the fossil record, and go further to explain its notable features with a coherent overarching framework. Evolutionary theory has made successful predictions about fossils that were discovered later (e.g. the whale fossils), about genetic patterns, and about numerous other aspects of biology such as the development of disease resistance. Model 4 (literal young-earth creationism) appears unsalvagable, as all of its predictions are wrong. Model 5 (nonliteral creationism, with separately created kinds on an old earth) can just barely be modified to be consistent with the fossil record, but only with bizarre and convoluted tinkering, and only, apparently, if God created the world to make it look like evolution happened. In my humble opinion, this still utterly fails to explain the record's notable features or to make any useful or testable predictions. It also raises the disturbing question of why God would go to such lengths to set up the appearance of evolution, right down to inserting the correct ratios of radioisotopes in the rocks. Okay, having blathered on about that, now I'll quit pontificating and get to the main point. The Main Point Creationists often state categorically that "there are no transitional fossils". This is simply not true.There are abundant transitional fossils of both the "chain of genera" type and the "species-to-species transition" type. There are documented speciations that cross genus lines and family lines. The interpretation of that fact I leave up to you. I have outlined five possible models above, and have explained why I think some of them are better than others. You might disagree with my conclusions, and you can choose the one you think is best, (or even develop another one). But you cannot simply say that there are no transitional fossils, because there are. As Gould said (1994): "The supposed lack of intermediary forms in the fossil record remains the fundamental canard of current antievolutionists. Such transitional forms are scarce, to be sure, and for two sets of reasons - geological (the gappiness of the fossil record) and biological (the episodic nature of evolutionary change, including patterns of punctuated equilibrium and transition within small populations of limited geological extenet). But paleontologists have discovered several superb examples of intermediary forms and sequences, more than enough to convince any fair-minded skeptic about the reality of life's physical geneology." |
|
|
|
Just a few more things to consider:
Nothing in the real world can be proved with absolute certainty. However, high degrees of certainty can be reached. In the case of evolution, we have huge amounts of data from diverse fields. Extensive evidence exists in all of the following different forms (Theobald 2004). Each new piece of evidence tests the rest. All life shows a fundamental unity in the mechanisms of replication, heritability, catalysis, and metabolism. Common descent predicts a nested hierarchy pattern, or groups within groups. We see just such an arrangement in a unique, consistent, well-defined hierarchy, the so-called tree of life. Different lines of evidence give the same arrangement of the tree of life. We get essentially the same results whether we look at morphological, biochemical, or genetic traits. Fossil animals fit in the same tree of life. We find several cases of transitional forms in the fossil record. The fossils appear in a chronological order, showing change consistent with common descent over hundreds of millions of years and inconsistent with sudden creation. Many organisms show rudimentary, vestigial characters, such as sightless eyes or wings useless for flight. Atavisms sometimes occur. An atavism is the reappearance of a character present in a distant ancestor but lost in the organism's immediate ancestors. We only see atavisms consistent with organisms' evolutionary histories. Ontogeny (embryology and developmental biology) gives information about the historical pathway of an organism's evolution. For example, as embryos whales and many snakes develop hind limbs that are reabsorbed before birth. The distribution of species is consistent with their evolutionary history. For example, marsupials are mostly limited to Australia, and the exceptions are explained by continental drift. Remote islands often have species groups that are highly diverse in habits and general appearance but closely related genetically. Squirrel diversity coincides with tectonic and sea level changes (Mercer and Roth 2003). Such consistency still holds when the distribution of fossil species is included. Evolution predicts that new structures are adapted from other structures that already exist, and thus similarity in structures should reflect evolutionary history rather than function. We see this frequently. For example, human hands, bat wings, horse legs, whale flippers, and mole forelimbs all have similar bone structure despite their different functions. The same principle applies on a molecular level. Humans share a large percentage of their genes, probably more than 70 percent, with a fruit fly or a nematode worm. When two organisms evolve the same function independently, different structures are often recruited. For example, wings of birds, bats, pterosaurs, and insects all have different structures. Gliding has been implemented in many additional ways. Again, this applies on a molecular level, too. The constraints of evolutionary history sometimes lead to suboptimal structures and functions. For example, the human throat and respiratory system make it impossible to breathe and swallow at the same time and make us susceptible to choking. Suboptimality appears also on the molecular level. For example, much DNA is nonfunctional. Some nonfunctional DNA, such as certain transposons, pseudogenes, and endogenous viruses, show a pattern of inheritance indicating common ancestry. Speciation has been observed. The day-to-day aspects of evolution -- heritable genetic change, morphological variation and change, functional change, and natural selection -- are seen to occur at rates consistent with common descent. Furthermore, the different lines of evidence are consistent; they all point to the same big picture. For example, evidence from gene duplications in the yeast genome shows that its ability to ferment glucose evolved about eighty million years ago. Fossil evidence shows that fermentable fruits became prominent about the same time. Genetic evidence for major change around that time also is found in fruiting plants and fruit flies (Benner et al. 2002). The evidence is extensive and consistent, and it points unambiguously to evolution, including common descent, change over time, and adaptation influenced by natural selection. It would be preposterous to refer to these as anything other than facts. |
|
|
|
And of the genetic evidence... regarding the "freshman" biology course...
Here is what is some of what is considered as genetic proof: Humans and chimpanzees have the exact same cytochrome c protein sequence. The "null hypothesis" given above is false. In the absence of common descent, the chance of this occurrence is conservatively less than 10-93 (1 out of 1093). Thus, the high degree of similarity in these proteins is a spectacular corroboration of the theory of common descent. Furthermore, human and chimpanzee cytochrome c proteins differ by ~10 amino acids from all other mammals. The chance of this occurring in the absence of a hereditary mechanism is less than 10-29. The yeast Candida krusei is one of the most distantly related eukaryotic organisms from humans. Candida has 51 amino acid differences from the human sequence. A conservative estimate of this probability is less than 10-25. As mentioned above, the cytochrome c proteins in chimps and humans are exactly identical. The clincher is that the two DNA sequences that code for cytochrome c in humans and chimps differ by only four nucleotides (a 1.2% difference), even though there are 1049 different sequences that could code for this protein. The combined effects of DNA coding redundancy and protein sequence redundancy make DNA sequence comparisons doubly redundant; DNA sequences of ubiquitous proteins are completely uncorrelated with phenotypic differences between species, but they are strongly causally correlated with heredity. This is why DNA sequence phylogenies are considered so robust. A common class of transposon is the SINE retroelement (Li 1997, pp. 349-352). One important SINE transposon is the 300 bp Alu element. All mammals contain many Alu elements, including humans where they constitute 10% of the human genome (i.e. 60 million bases of repetitive DNA) (Smit 1996; Li 1997, pp. 354, 357). Very recent human Alu transpositions have been used to elucidate historic and prehistoric human migrations, since some individuals have newer Alu insertions that other individuals lack (Novick et al. 1993; Novick et al. 1995). In fact, common Alu transpositions have been demonstrated to be reliable markers of common descent in paternity cases and in criminal forensics (Novick et al. 1993; Novick et al. 1995; Roy-Engel et al. 2001). Most importantly, in the human α-globin cluster there are seven Alu elements, and each one is shared with chimpanzees in the exact same seven locations (Sawada et al. 1985). More specifically, three different specific SINE transpositions have been found in the same chromosomal locations of cetaceans (whales), hippos, and ruminants, all of which are closely related according to the standard phylogenetic tree. However, all other mammals, including camels and pigs, lack these three specific transpositions (Shimamura 1997). More detail and explanation can be found on this topic in Edward Max's Plagiarized Errors and Molecular Genetics FAQ. There are very many examples of redundant pseudogenes shared between primates and humans. One is the ψη-globin gene, a hemoglobin pseudogene. It is shared among the primates only, in the exact chromosomal location, with the same mutations that destroy its function as a protein-coding gene (Goodman et al. 1989). Another example is the steroid 21-hydroxylase gene. Humans have two copies of the steroid 21-hydroxylase gene, a functional one and a untranslated pseudogene. Inactivation of the functional gene leads to congenital adrenal hyperplasia (CAH, a rare and serious genetic disease), giving positive evidence that the 21-hydroxylase pseudogene lacks its proper function. Both chimpanzees and humans share the same eight base-pair deletion in this pseudogene that renders it incapable of its normal function (Kawaguchi et al. 1992). In humans, endogenous retroviruses occupy about 1% of the genome, in total constituting ~30,000 different retroviruses embedded in each person's genomic DNA (Sverdlov 2000). There are at least seven different known instances of common retrogene insertions between chimps and humans, and this number is sure to grow as both these organism's genomes are sequenced (Bonner et al. 1982; Dangel et al. 1995; Svensson et al. 1995; Kjellman et al. 1999; Lebedev et al. 2000; Sverdlov 2000). Figure 4.4.1 shows a phylogenetic tree of several primates, including humans, from a recent study which identified numerous shared endogenous retroviruses in the genomes of these primates (Lebedev et al. 2000). The arrows designate the relative insertion times of the viral DNA into the host genome. All branches after the insertion point (to the right) carry that retroviral DNA - a reflection of the fact that once a retrovirus has inserted into the germ-line DNA of a given organism, it will be inherited by all descendents of that organism. The Felidae (i.e. cats) provide another example. The standard phylogenetic tree has small cats diverging later than large cats. The small cats (e.g. the jungle cat, European wildcat, African wildcat, blackfooted cat, and domestic cat) share a specific retroviral gene insertion. In contrast, all other carnivores which have been tested lack this retrogene (Futuyma 1998, pp. 293-294; Todaro et al. 1975). Extremely extensive genetic change has been observed, both in the lab and in the wild. We have seen genomes irreversibly and heritably altered by numerous phenomena, including gene flow, random genetic drift, natural selection, and mutation. Observed mutations have occurred by mobile introns, gene duplications, recombination, transpositions, retroviral insertions (horizontal gene transfer), base substitutions, base deletions, base insertions, and chromosomal rearrangements. Chromosomal rearrangements include genome duplication (e.g. polyploidy), unequal crossing over, inversions, translocations, fissions, fusions, chromosome duplications and chromosome deletions (Futuyma 1998, pp. 267-271, 283-294). |
|
|
|
And of the human evolution...here is some evidence:
This list includes fossils that are important for either their scientific or historic interest, or because they are often mentioned by creationists. One sometimes reads that all hominid fossils could fit in a coffin, or on a table, or a billiard table. That is a misleading image, as there are now thousands of hominid fossils. They are however mostly fragmentary, often consisting of single bones or isolated teeth. Complete skulls and skeletons are rare. The list is sorted by species, going from older to more recent species. Within each species, finds are sorted by the order of their discovery. Each species has a type specimen which was used to define it. Each entry will consist of a specimen number if known (or the site name, if many fossils were found in one place), any nicknames in quotes, and a species name. The species name will be followed by a '?' if suspect. If the fossil was originally placed in a different species, that name will also be given. The following terminology is used. A skull refers to all the bones of the head. A cranium is a skull minus the lower jaw. A braincase is the cranium minus the face and upper jaw. A skullcap is the top portion of the braincase. Abbreviations: ER East (Lake) Rudolf, Kenya WT West (Lake) Turkana, Kenya KP Kanapoi, Kenya SK Swartkrans, South Africa Sts,Stw Sterkfontein, South Africa TM Transvaal Museum, South Africa OH Olduvai Hominid, Tanzania AL Afar Locality, Ethiopia ARA-VP Aramis Vertebrate Paleontology, Ethiopia BOU-VP Bouri Vertebrate Paleontology, Ethiopia TM Toros-Menalla, Chad TM 266-01-060-1, "Toumai", Sahelanthropus tchadensis Discovered by Ahounta Djimdoumalbaye in 2001 in Chad, in the southern Sahara desert. Estimated age is between 6 and 7 million years. This is a mostly complete cranium with a small brain (between 320 and 380 cc). (Brunet et al. 2002, Wood 2002) It has many primitive apelike features, such as the small brainsize, along with others, such as the brow ridges and small canine teeth, which are characteristic of later hominids. "ARA-VP, Sites 1, 6 & 7", Ardipithecus ramidus Discovered by a team led by Tim White, Berhane Asfaw and Gen Suwa (1994) in 1992 and 1993 at Aramis in Ethiopia. Estimated age is 4.4 million years. The find consisted of fossils from 17 individuals. Most remains are teeth, but there is also a partial lower jaw of a child, a partial cranium base, and partial arm bone from 2 individuals. ARA-VP-6/1 consists of 10 teeth from a single individual. ARA-VP-7/2 consists of parts of all three bones from the left arm of a single individual, with a mixture of hominid and ape features. KP 271, "Kanapoi Hominid", Australopithecus anamensis Discovered by Bryan Patterson in 1965 at Kanapoi in Kenya (Patterson and Howells 1967). This is a lower left humerus which is about 4.0 million years old. (Creationist arguments) KP 29281, Australopithecus anamensis Discovered by Peter Nzube in 1994 at Kanapoi in Kenya (Leakey et al. 1995). This is a lower jaw with all its teeth which is about 4.0 million years old. KP 29285, Australopithecus anamensis Discovered by Kamoya Kimeu in 1994 at Kanapoi in Kenya. This is a tibia, missing the middle portion of the bone, which is about 4.1 million years old. It is the oldest known evidence for hominid bipedalism. AL 129-1, Australopithecus afarensis Discovered by Donald Johanson in 1973 at Hadar in Ethiopia (Johanson and Edey 1981; Johanson and Taieb 1976). Estimated age is about 3.4 million years. This find consisted of portions of both legs, including a complete right knee joint which is almost a miniature of a human knee, but apparently belongs to an adult. AL 288-1, "Lucy", Australopithecus afarensis Discovered by Donald Johanson and Tom Gray in 1974 at Hadar in Ethiopia (Johanson and Edey 1981; Johanson and Taieb 1976). Its age is about 3.2 million years. Lucy was an adult female of about 25 years. About 40% of her skeleton was found, and her pelvis, femur (the upper leg bone) and tibia show her to have been bipedal. She was about 107 cm (3'6") tall (small for her species) and about 28 kg (62 lbs) in weight. (Creationist arguments) AL 333 Site, "The First Family", Australopithecus afarensis? Discovered in 1975 by Donald Johanson's team at Hadar in Ethiopia (Johanson and Edey 1981). Its age is about 3.2 million years. This find consisted of remains of at least 13 individuals of all ages. The size of these specimens varies considerably. Scientists debate whether the specimens belong to one species, two or even three. Johanson believes they belong to a single species in which males were considerably larger than females. Others believe that the larger specimens belong to a primitive species of Homo. "Laetoli footprints", Australopithecus afarensis? Discovered in 1978 by Paul Abell at Laetoli in Tanzania. Estimated age is 3.7 million years. The trail consists of the fossilized footprints of two or three bipedal hominids. Their size and stride length indicate that they were about 140 cm (4'8") and 120 cm (4'0") tall. Many scientists claim that the footprints are effectively identical to those of modern humans (Tattersall 1993; Feder and Park 1989), while others claim the big toes diverged slightly (like apes) and that the toe lengths are longer than humans but shorter than in apes (Burenhult 1993). The prints are tentatively assigned to A. afarensis, because no other hominid species is known from that time, although some scientists disagree with that classification. (Creationist arguments) AL 444-2, Australopithecus afarensis Discovered by Bill Kimbel and Yoel Rak in 1991 at Hadar in Ethiopia (Kimbel et al. 1994). Estimated age is 3 million years. This is a 70% complete skull of a large adult male, easily the most complete afarensis skull known, with a brain size of 550 cc. According to its finders, it strengthens the case that all the First Family fossils were members of the same species, because the differences between AL 444-2 and the smaller skulls in the collection are consistent with other sexually dimorphic hominoids. KNM-WT 40000, Kenyanthropus platyops Discovered by Justus Erus in 1999 at Lomekwi in Kenya (Leakey et al. 2001, Lieberman 2001). Estimated age is about 3.5 million years. This is a mostly complete, but heavily distorted, cranium with a large, flat face and small teeth. The brain size is similar to that of australopithecines. This fossil has considerable similarities with, and is possibly related to, the habiline fossil ER 1470. "Taung Child", Australopithecus africanus Discovered by Raymond Dart in 1924 at Taung in South Africa (Dart 1925). The find consisted of a full face, teeth and jaws, and an endocranial cast of the brain. It is between 2 and 3 million years old, but it and most other South African fossils are found in cave deposits that are difficult to date. The teeth of this skull showed it to be from an infant about 5 or 6 years old (it is now believed that australopithecines matured faster than humans, and that the Taung child was about 3). The brain size was 410 cc, and would have been around 440 cc as an adult. The large rounded brain, canine teeth which were small and not apelike, and the position of the foramen magnum(*) convinced Dart that this was a bipedal human ancestor, which he named Australopithecus africanus (African southern ape). Although the discovery became famous, Dart's interpretation was rejected by the scientific community until the mid-1940's, following the discovery of other similar fossils. (*) Anatomical digression: the foramen magnum is the hole in the skull through which the spinal cord passes. In apes, it is towards the back of the skull, because of their quadrupedal posture. In humans it is at the bottom of the skull because our head is balanced on top of a vertical column. In australopithecines it is also placed forward from the ape position, although not always as far forward as in humans. TM 1512, Australopithecus africanus (was Plesianthropus transvaalensis) Discovered by Robert Broom in 1936 at Sterkfontein in South Africa (Broom 1936). The second australopithecine fossil found, it consisted of parts of the face, upper jaw and braincase. Sts 5, "Mrs Ples", Australopithecus africanus Discovered by Robert Broom in 1947 at Sterkfontein in South Africa. It is a very well preserved cranium of an adult. It has usually been thought to be female, but there has been a recent claim that it is male. It is the best specimen of africanus. It is about 2.5 million years old, with a brain size of about 485 cc. (It has recently been claimed that the fossils Sts 5 and Sts 14 (see next entry) were from the same individual) Sts 14, Australopithecus africanus Discovered by Robert Broom and J.T. Robinson in 1947 at Sterkfontein (Broom and Robinson 1947). Estimated age is about 2.5 million years. This find consisted of a nearly complete vertebral column, pelvis, some rib fragments, and part of a femur of a very small adult. The pelvis is more human than apelike, and is strong evidence that africanus was bipedal (Brace et al. 1979), although it may not have had the strong striding gait of modern humans (Burenhult 1993). BOU-VP-12/130, Australopithecus garhi Discovered by Yohannes Haile-Selassie in 1997 at Bouri in Ethiopia (Asfaw et al. 1999). This is a partial skull including an upper jaw with teeth which is about 2.5 million years old. Stw 573, "Little Foot", Australopithecus Discovered by Ron Clarke between 1994 and 1997 at Sterkfontein in South Africa. Estimated age is 3.3 million years. This fossil consists, so far, of many bones from the foot, leg, hand and arm, and a complete skull. More bones are thought to be still embedded in rock. (Clarke and Tobias 1995, Clarke 1998, Clarke 1999) (An increasing number of scientists are placing the following three species, aethiopicus, robustus and boisei, in the genus Paranthropus) KNM-WT 17000, "The Black Skull", Australopithecus aethiopicus Discovered by Alan Walker in 1985 near West Turkana in Kenya. Estimated age is 2.5 million years. This find is an intact, almost complete cranium. The brain size is very small for a hominid, about 410 cc, and the skull has a puzzling mixture of primitive and advanced features. (Leakey and Lewin 1992) TM 1517, Australopithecus robustus (was Paranthropus robustus) Discovered by a schoolboy, Gert Terblanche, in 1938 at Kromdraai in South Africa (Broom 1938). It consisted of skull fragments, including five teeth, and a few skeletal fragments. This was the first specimen of robustus. SK 48, Australopithecus robustus (was Paranthropus crassidens) Discovered by Mr. Fourie in 1950 at Swartkrans in South Africa (Johanson and Edgar 1996). It is a cranium, probably belonging to an adult female, and 1.5-2.0 million years old. It is the most complete skull of robustus. DNH 7, "Eurydice", Australopithecus robustus Discovered by André Keyser in 1994 at the Drimolen cave in South Africa. Estimated age is between 1.5 and 2.0 million years. This is an almost complete skull and lower jaw of a female, one of the most complete hominid skulls ever found, and the first significant fossil of a female robustus. A fossil of a male robustus lower jaw, nicknamed Orpheus (DNH 8), was found a few inches away from it. (Keyser 2000) OH 5, "Zinjanthropus", "Nutcracker Man", Australopithecus boisei Discovered by Mary Leakey in 1959 at Olduvai Gorge in Tanzania (Leakey 1959). Estimated age is 1.8 million years. It is an almost complete cranium, with a brain size is about 530 cc. This was the first specimen of this species. Louis Leakey briefly considered this a human ancestor, but the claim was dropped when Homo habilis was found soon afterwards. KNM-ER 406, Australopithecus boisei Discovered by Richard Leakey in 1969 near Lake Turkana in Kenya. This find was a complete, intact cranium lacking only the teeth (Lewin 1987). Estimated age is about 1.7 million years. The brain size is about 510 cc. (see also ER 3733) KNM-ER 732, Australopithecus boisei Discovered by Richard Leakey in 1970 near Lake Turkana in Kenya. The cranium is similar to that of OH 5, but is smaller and has other differences such as the lack of a sagittal crest. The estimated age is about 1.7 million years. The brain size is about 500 cc. Most experts believe this is a case of sexual dimorphism, with the female being smaller than the male. KGA10-525, Australopithecus boisei Discovered by A. Amzaye in 1993 at Konso in Ethiopia (Suwa et al. 1997). This fossil consists of much of a skull, including a lower jaw. The estimated age is 1.4 million years. The brain size is estimated to be about 545 cc. Although it has many features specific to boisei, it also lies outside the previously known range of variation of that species in many ways, suggesting that boisei (and maybe other hominid species) may have been more variable than is often thought (Delson 1997). Homo habilis Discovered by the Leakeys in the early 1960's at Olduvai Gorge in Tanzania. A number of fragmentary specimens were found (Leakey et al. 1964). OH 7, "Jonny's Child", found by Jonathon Leakey in 1960 (Leakey 1961), consisted of a lower jaw and two cranial fragments of a child, and a few hand bones. Estimated age is 1.8 million years, and the brain size was about 680 cc. OH 8: found in 1960, consisted of a set of foot bones, complete except for the back of the heel and the toes. Estimated age is about 1.8 million years. They have a mixture of human and ape traits, but are consistent with bipedal locomotion. (Aiello and Dean 1990) OH 13, "Cindy": found in 1963, consisted of a lower jaw and teeth, bits of the upper jaw and a cranial fragment. Estimated age is 1.6 million years, and the brain size was about 650 cc. OH 16, "George": found in 1963, consisted of teeth and some very fragmentary parts of the skull. (George was unfortunately trampled by Masai cattle before he was found, and much of the skull was lost.) Estimated age is 1.7 million years, and the brain size was about 640 cc. OH 24, "Twiggy", Homo habilis Discovered by Peter Nzube in 1968 at Olduvai Gorge in Tanzania. It consisted of an fairly complete but very badly crushed cranium and seven teeth. It is about 1.85 million years old and has a brain size of about 590 cc. KNM-ER 1470, Homo habilis (or Homo rudolfensis?) Discovered by Bernard Ngeneo in 1972 at Koobi Fora in Kenya (Leakey 1973). Estimated age is 1.9 million years. This is the most complete habilis skull known. Its brain size is 750 cc, large for habilis. It was originally dated at nearly 3 million years old, a figure that caused much confusion as at the time it was older than any known australopithecines, from whom habilis had supposedly descended. A lively debate over the dating of 1470 ensued (Lewin 1987; Johanson and Edey 1981; Lubenow 1992). The skull is surprisingly modern in some respects. The braincase is much larger and less robust than any australopithecine skull, and is also without the large brow ridges typical of Homo erectus. It is however very large and robust in the face. A number of leg bones were found within a couple of kilometers, and are thought to probably belong to the same species. The most complete, KNM-ER 1481, consisted of a complete left femur, both ends of a left tibia and the lower end of a left fibula (the smaller of the two lower leg bones). These are quite similar to the bones of modern humans. (Creationist arguments) KNM-ER 1805, "The Mystery Skull", Homo habilis?? Discovered by Paul Abell in 1973 at Koobi Fora in Kenya (Leakey 1974). Estimated age is 1.85 million years. This find consisted of much of a heavily built cranium containing many teeth. Its brain size is about 600 cc. Some features, such as the sagittal crest, are typical of A. boisei, but the teeth are too small for that species. (Willis 1989; Day 1986) Various workers have assigned it to almost every conceivable species, but many studies have attributed it to Homo habilis (e.g. Wood 1991). A recent cladistic study has placed it outside of Homo and most similar to robust australopithecines, though different from any named species. (Prat 2002) KNM-ER 1813, Homo habilis? Discovered by Kamoya Kimeu in 1973 at Koobi Fora in Kenya (Leakey 1974). This specimen is similar to 1470, but is much smaller, with a brain size of 510 cc. Estimated age is 1.8-1.9 million years. Some scientists believe this a case of sexual dimorphism, others believe that the brain architecture is different and that 1813 is another species of Homo, and others believe it is an australopithecine. Like the previous skull, 1805, this one is in the "Suspense Account". (Willis 1989) Stw 53, Homo habilis? Discovered by Alun Hughes in 1976 at Sterkfontein in South Africa (Hughes and Tobias 1977). Estimated age is 1.5 to 2 million years. It consisted of a number of cranium fragments including teeth. Many stone tools were found in the same layer. OH 62, "Dik-dik hominid", Homo habilis Discovered by Tim White in 1986 at Olduvai Gorge in Tanzania (Johanson and Shreeve 1989; Johanson et al. 1987). Estimated age is 1.8 million years. The find consisted of portions of skull, arm, leg bones and teeth. Almost all the features of the skull closely resemble habilis fossils such as OH 24, ER 1813 and ER 1470, rather than the australopithecines. But the estimated height is very small, maybe about 105 cm (3'5"), and the arms are very long in proportion to the legs. These are australopithecine traits, and in fact the skeletal bones are very similar to those of Lucy. This find is significant because it is the only fossil in which limb bones have been securely assigned to habilis. Because of the small size, this was almost certainly a female. As with the australopithecines, males would have been considerably larger. OH 65, Homo habilis Discovered in 1995 at Olduvai Gorge in Tanzania. This fossil consisted of a complete upper jaw and part of the lower face, dated at 1.8 million years. Because of its similarities to the fossil ER 1470, its finders have suggested that OH 65 may lead to a reclassification of the habiline fossils. (Blumenschine et al. 2003, Tobias 2003) Trinil 2, "Java Man", "Pithecanthropus I", Homo erectus (was Pithecanthropus erectus) Discovered by Eugene Dubois in 1891 near Trinil on the Indonesian island of Java. Its age is uncertain, but thought to be about 700,000 years. This find consisted of a flat, very thick skullcap, and a few teeth (which may belong to orang-utans). The following year a femur was found about 12 meters away (Theunissen 1989). The brain size is about 940 cc. The femur is fully modern, and many scientists now believe that it belongs to a modern human. (Creationist arguments) "Peking Man Site", Homo erectus (was Sinanthropus pekinensis) Between 1929 and 1937, 14 partial craniums, 11 lower jaws, many teeth, some skeletal bones and large numbers of stone tools were discovered in the Lower Cave at Locality 1 of the Peking Man site at Zhoukoudian (formerly Choukoutien), near Beijing (formerly Peking), in China. Their age is estimated to be between 500,000 and 300,000 years old. (A number of fossils of modern humans were also discovered in the Upper Cave at the same site in 1933.) The most complete fossils, all of which were braincases or skullcaps, are: Skull III, discovered at Locus E in 1929 is an adolescent or juvenile with a brain size of 915 cc. Skull II, discovered at Locus D in 1929 but only recognized in 1930, is an adult or adolescent with a brain size of 1030 cc. Skulls X, XI and XII (sometimes called LI, LII and LIII) were discovered at Locus L in 1936. They are thought to belong to an adult man, an adult woman and a young adult, with brain sizes of 1225 cc, 1015 cc and 1030 cc respectively. (Weidenreich 1937) Skull V: two cranial fragments were discovered in 1966 which fit with (casts of) two other fragments found in 1934 and 1936 to form much of a skullcap with a brain size of 1140 cc. These pieces were found at a higher level, and appear to be more modern than the other skullcaps. (Jia and Huang 1990) (Creationist arguments) Most of the study on these fossils was done by Davidson Black until his death in 1934. Franz Weidenreich replaced him and studied the fossils until leaving China in 1941. The original fossils disappeared in 1941 while being shipped to the United States for safety during World War II, but excellent casts and descriptions remain. Since the war, other erectus fossils have been found at this site and others in China. Sangiran 2, "Pithecanthropus II", Homo erectus Discovered by G.H.R. von Koenigswald in 1937 at Sangiran on the Indonesian island of Java. This fossil is a braincase that is very similar to the first Java Man skull cap, but more complete and smaller, with a brain size of only about 815 cc. OH 9, "Chellean Man", Homo erectus Discovered by Louis Leakey in 1960 at Olduvai Gorge in Tanzania (Leakey 1961). Estimated age is 1.5 million years. It consisted of a partial braincase with massive browridges and a brain size of 1065 cc. OH 12, "Pinhead", Homo erectus Discovered by Margaret Cropper in 1962 at Olduvai Gorge in Tanzania. It is similar to but less complete than OH 9, and smaller, with an estimated brain size of only 750 cc. It is estimated to be between 800,000 and 1200,000 years old. Anton (2004) has found a few more pieces of this skull, but it remains very fragmentary. Sangiran 17, "Pithecanthropus VIII", Homo erectus Discovered by Sastrohamidjojo Sartono in 1969 at Sangiran on Java. This consists of a fairly complete cranium, with a brain size of about 1000 cc. It is the most complete erectus fossil from Java. This skull is very robust, with a slightly projecting face and huge flaring cheekbones. It has been thought to be about 800,000 years old, but a recent dating has given a much older figure of nearly 1.7 million years. If the older date is correct, it means Homo erectus migrated out of Africa much earlier than previously thought. KNM-ER 3733, Homo erectus (or Homo ergaster) Discovered by Bernard Ngeneo in 1975 at Koobi Fora in Kenya. Estimated age is 1.7 million years. This superb find consisted of an almost complete cranium. The brain size is about 850 cc, and the whole skull is similar to the Peking Man fossils. The discovery of this fossil in the same stratum as ER 406 (A. boisei) delivered the coup de grace to the single species hypothesis: the idea that there has never been more than one hominid species at any point in history. (Leakey and Walker 1976) KNM-WT 15000, "Turkana Boy", Homo erectus (or Homo ergaster) Discovered by Kamoya Kimeu in 1984 at Nariokotome near Lake Turkana in Kenya (Brown et al. 1985; Leakey and Lewin 1992; Walker and Leakey 1993; Walker and Shipman 1996). This is an almost complete skeleton of an 11 or 12 year old boy, the only major omissions being the hands and feet. (Some scientists believe erectus matured faster than modern humans, and that he was really about 9 years old (Leakey and Lewin 1992).) It is the most complete known specimen of erectus, and also one of the oldest, at 1.6 million years. The brain size was 880 cc, and it is estimated that it would have been 910 cc at adulthood. The boy was 160 cm (5'3") tall, and would have been about 185 cm (6'1") as an adult. This is surprisingly tall, indicating that many erectus may have been as large as modern humans. Except for the skull, the skeleton is very similar to that of modern boys, although there are a number of small differences. The most striking is that the holes in his vertebrae, through which the spinal cord goes, have only about half the cross-sectional area found in modern humans. One suggested explanation for this is that the boy lacked the fine motor control we have in the thorax to control speech, implying that he wasn't nearly as fluent a speaker as modern humans are (Walker and Shipman 1996). D2700, Homo georgicus Discovered in 2001 at Dmanisi in Georgia. Estimated age is 1.8 million years. It consisted of a mostly complete skull, including a lower jaw (D2735) belonging to the same individual. (Vekua et al. 2002, Balter and Gibbons 2002) At around 600 cc, this is the smallest and most primitive hominid skull ever discovered outside of Africa. This skull and two others discovered nearby form a near-perfect transition between H. habilis and ergaster. ATD6-69, Homo antecessor? Discovered at Atapuerca in Spain. This is a partial face of a child who was probably about 10 to 11.5 years old. This fossil is over 780,000 years old. (Bermudez de Castro et al. 1997) "Heidelberg Man", "Mauer Jaw", Homo sapiens (archaic) (also Homo heidelbergensis) Discovered by gravel pit workers in 1907 near Heidelberg in Germany. Estimated age is between 400,000 and 700,000 years. This find consisted of a lower jaw with a receding chin and all its teeth. The jaw is extremely large and robust, like that of Homo erectus, but the teeth are at the small end of the erectus range. It is often classified as Homo heidelbergensis, but has also sometimes been considered to be a European Homo erectus. "Rhodesian Man", "Kabwe", Homo sapiens (archaic) (was Homo rhodesiensis) Discovered by a laborer in 1921 at Broken Hill in Northern Rhodesia (now Kabwe in Zambia) (Woodward 1921). This was a complete cranium that was very robust, with large brow ridges and a receding forehead. Estimated age is between 200,000 and 125,000 years. The brain size was about 1280 cc. (Creationist arguments) Arago XXI, "Tautavel Man", Homo sapiens (archaic) (also Homo heidelbergensis) Discovered at Arago in southern France in 1971 by Henry de Lumley. Estimated age is 400,000 years. The fossil consists of a fairly complete face, with 5 molar teeth and part of the braincase. The brain size was about 1150 cc. The skull contains a mixture of features from archaic Homo sapiens and Homo erectus, to which it is sometimes assigned. Petralona 1, Homo sapiens (archaic) Discovered by villagers at Petralona in Greece in 1960. Estimated age is 250,000-500,000 years. It could alternatively be considered to be a late Homo erectus, and also has some Neandertal characteristics. The brain size is 1220 cc, high for erectus but low for sapiens, and the face is large with particularly wide jaws. (Day 1986) Atapuerca 5, Homo sapiens (archaic) Discovered in the Sima de los Huesos ("Pit of Bones") at the Atapuerca cave site in northern Spain in 1992 and 1993 by Juan-Luis Arsuaga. It is about 300,000 years old, with a brain size of 1125 cc. The face is broad with a huge nasal opening, and resembles Neandertals in some traits but not in others. This is the most complete pre-modern skull in the entire hominid fossil record. (Arsuaga et al. 1993; Johanson and Edgar 1996) Feldhofer, Neanderthal 1, Homo sapiens neanderthalensis Discovered by Johann Fuhlrott in 1856 in a small cave at Feldhofer in the Neander Valley in Germany. The find consisted of a skullcap, thigh bones, part of a pelvis, some ribs, and some arm and shoulder bones. The lower left arm had been broken in life, and as a result the bones of the left arm were smaller than those of the right. Fuhlrott recognized it as a primitive human, but the German establishment headed by Rudolf Virchow rejected this view, incorrectly claiming that it was a pathological modern human. (Trinkaus and Shipman 1992) In 1999, the original site was rediscovered, and more bones from the same specimen were recovered. (Creationist arguments) (There were actually two earlier Neandertal finds. A partial cranium of a 2.5 year old child found in 1829 in Belgium was not recognized until 1936. An adult cranium found on Gibraltar in 1848 gathered dust in a museum until it was recognized as a Neandertal in 1864.) "Spy 1 and 2", Homo sapiens neanderthalensis Discovered by Marcel de Puydt and Max Lohest in 1886 at the Grotto of Spy (pronounced Spee) d'Orneau in Belgium. Estimated age is about 60,000 years. This find consisted of two almost complete skeletons. The excellent descriptions of the skeletons established that they were very old, and largely discredited the idea that the Neandertal physique was a pathological condition, but also erroneously concluded that Neandertal Man walked with bent knees. "Krapina Site", Homo sapiens neanderthalensis Discovered by Dragutin Gorjanovic-Kramberger in 1899 near Krapina in Croatia. This site yielded significant remains from two to three dozen individuals, and teeth and jaw fragments from dozens more. When Gorjanovic published on his finds in 1906, it confirmed for once and for all that Neandertals were not pathological modern humans. "Old Man", Homo sapiens neanderthalensis Discovered by Amedee and Jean Bouyssonie in 1908 near La-Chapelle-aux-Saints in France. It is about 50,000 years old, with a brain size of 1620 cc. This nearly complete skeleton was reconstructed by Marcellin Boule, who wrote a definitive and highly influential paper on it which managed to be totally wrong in many of its conclusions. It exaggerated the apelike characteristics of the fossil, popularizing the stereotype, which would last for decades, of a stooping ape-man shuffling along on bent knees. This specimen was between about 30 and 40 when he died, but had a healed broken rib, severe arthritis of the hip, lower neck, back and shoulders, and had lost most of his molar teeth. The fact that he survived as long as he did indicates that Neandertals must have had a complex social structure. "Shanidar Site", Homo sapiens neanderthalensis Ralph Solecki discovered 9 Neandertal skeletons between 1953 and 1960 at the Shanidar cave in Iraq. They are thought to be between 70,000 and 40,000 years old. One of them, Shanidar 4, had apparently been buried with offerings of flowers (although this interpretation has been disputed). In 1971 Solecki wrote a book, "Shanidar, the First Flower People", reversing the earlier stereotypes of semi-human brutes. Another skeleton, Shanidar 1, was partially blind, one-armed and crippled. His survival also is evidence of a complex social structure. "Saint-Cesaire Neandertal", Homo sapiens neanderthalensis Discovered by Francois Leveque in 1979 near the village of Saint-Cesaire in France. It consisted of a badly crushed skeleton. The skull was mostly complete, with only the back of the cranium missing. It is dated at about 35,000 years old, and is one of the latest Neandertals known. This find was of special interest because it was found with tools that had previously been assumed to belong to the Cro-Magnon culture, instead of the usual Neandertal tool kit. LB1, "Hobbit", Homo floresiensis Discovered by an Australian/Indonesian team in 2003 at the Liang Bua cave on the Indonesian island of Flores. This find consisted of an almost complete skull and a partial skeleton consisting of leg bones, parts of the pelvis, hands and feet, and some other fragments. LB1 was an adult, probably female, about 1 meter (3'3") tall with an extremely small brain size of 417cc. The skull has human-like teeth with a receding forehead and no chin. The fossil is 18,000 years old and was found with stone tools. This species is thought to be a dwarf form of Homo erectus. (Brown et al. 2004, Morwood et al. 2004, Lahr and Foley 2004) "Cro-Magnon Site", Homo sapiens sapiens (modern) Discovered by workmen in 1868 at Cro-Magnon in France. Estimated age is 30,000 years. The site yielded skeletons of 5 buried individuals, along with stone tools, carved reindeer antlers, ivory pendants, and shells. The Cro-Magnons lived in Europe between 35,000 and 10,000 years ago. They are virtually identical to modern man, being tall and muscular and slightly more robust than most modern humans. They were skilled hunters, toolmakers and artists famous for the cave art at places such as Lascaux, Chauvet, and Altamira. Summary There are a number of clear trends (which were neither continuous nor uniform) from early australopithecines to recent humans: increasing brain size, increasing body size, increasing use of and sophistication in tools, decreasing tooth size, decreasing skeletal robustness. There are no clear dividing lines between some of the later gracile australopithecines and some of the early Homo, between erectus and archaic sapiens, or archaic sapiens and modern sapiens. Creationist Wayne Jackson quotes the paragraph to the left in an online article. Read my response here. Despite this, there is little consensus on what our family tree is. Everyone accepts that the robust australopithecines (aethiopicus, robustus and boisei) are not ancestral to us, being a side branch that left no descendants. Whether H. habilis is descended from A. afarensis, africanus, both of them, or neither of them, is still a matter of debate. It is possible that none of the known australopithecines is our ancestor. A number of new genera and species have been discovered within the last decade (Ar. ramidus, Au. amanensis, Au. bahrelghazali, Au. garhi, Orrorin, Kenyanthropus, Sahelanthropus) and no consensus has yet formed on how they are related to each other or to humans. It is generally accepted that Homo erectus is descended from Homo habilis (or, at least, some of the fossils often assigned to habilis), but the relationship between erectus, sapiens and the Neandertals is still unclear. Neandertal affinities can be detected in some specimens of both archaic and modern sapiens. |
|
|
|
Where is yours?
|
|
|
|
Where is yours? http://www.nytimes.com/2007/08/09/science/08cnd-fossil.html Fossils in Kenya Challenge Linear Evolution Two fossils found in Kenya have shaken the human family tree, possibly rearranging major branches thought to be in a straight ancestral line to Homo sapiens. Scientists who dated and analyzed the specimens — a 1.44 million-year-old Homo habilis and a 1.55 million-year-old Homo erectus — said their findings challenged the conventional view that these species evolved one after the other. Instead, they apparently lived side by side in eastern Africa for almost half a million years. If this interpretation is correct, the early evolution of the genus Homo is left even more shrouded in mystery than before. It means that both habilis and erectus must have originated from a common ancestor between two million and three million years ago, a time when fossil hunters had drawn a virtual blank. As new information comes to light, we see "evolution" smashed into tiny peices, which the slaves...er...Darwinists then put back together to worship some more. Homo Erectus and Homo Habilis lived side by side and now science has to look for their ancestor, but they have found nothing yet. My message to Darwinists everywhere: "Good luck guys, they are simply extinct apes, which were created ex nihilo by God 6,000 years ago. They have no ancestors. But by all means waste your lives staring into the bottomless pit." |
|
|
|
It is quite possible... I would think probable, for those two to have to have lived simultaneously at some point in time... it is not as if one appears suddenly while the other disappears just as quickly... Evolution is fact... the mechanics are an ever growing and learning portion...
And it is fantastic if we learn anything that disproves something we thought we knew before... FANTASTIC!!! Good post spider!! Thank you. |
|
|
|
This thread isn't for ad hominems. This thread isn't for insults. This thread isn't for silly, illogical arguments. I am going to make a statement about science and religion and I want someone to try to refute me. MY STATEMENT There is a certain flexibility in the genetic code of every Genus on the planet. This flexibility results in the abundance of speices which we see around us. Every Genus has a varying degree of flexibility, which can effect all morphological aspects of the individual species. There are limits to this flexibility, no member of a genus will produce a species which does not belong to the genus. In other words, a lizard cannot be the progenator of mammals. This is supported by the Bible, which shows that Noah brought two of every kind, kind being analogous to Genus. We see the flexiblity of species described in Genesis, when Jacob bred white goats to produce black goats. I believe that verifiable science agrees with the Bible on biology. I think that Evolution is on shakey ground, because of the assumption made that a cross Genus jump is possible, even though we have never witnessed such an event. As has been demonstrated by many Christians here and stated by many non-Christians: A Christian can believe in evolution. My statement has nothing to do with faith, it has to do with the fact that as a thinking and inquisitive individual, I haven't found any support for the belief that a genus can branch out to produce a new genus. Speciation has been verified, but until there is hard evidence (fossils don't count) of one genus producing another genus, I will continue to believe that Evolution is a myth. Rules 1 and 2. |
|
|